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MlFinLab

e Novel Quantitative Finance techniques from elite
and peer-reviewed journals.
e Written in Python and available on PyPi
pip 1nstall mlfinlab
e Implementing algorithms since 2018

e Top 5-th algorithmic-trading package on GitHub

H mifinlab

MIFinlab helps portfolio managers and traders who
want to leverage the power of machine learning by
providing reproducible, interpretable, and easy to

use tools.

@ Python Y 1.5k % 403

github.com/hudson-and-thames/mlfinlab
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Examples of use

45+ Notebooks to try implemented functions “"" =

L:J research

Notebooks based on financial machine learning.

@ Jupyter Notebook Y 666 % 240

github.com/hudson-and-thames/research
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We can see that the Theory-implied correlation matrix is less noisy and has a clearly defined structure in comparison to the Empirical correlation matrix.

If we want to measure the similarity of the Empirical correlation matrix and the Theory-implied correlation matrix, we can use the correlation matrix distance introduced by
Herdin and Bonek in a paper AMIMO Cerrelation Matrix based Metric for Characterizing Non-Stationarity available here. The distance is calculated as:

Y5
A )= ISy

Where 3_,. 3., are the two correlation matrices and the ILll; is the Frobenius norm.

"The distance d'zl, 23: measures the orthogonality between the considered correlation matrices. It becomes zero if the correlation matrices are equal up to a scaling
factor. and one if they differ to a maximum extent".

distance = tic.corr_dist(etf_corr, etf_tic)

al and the theory-implied correlation matrices is' , distance)

P ie distance between empir

The distance between empirical and the theory-implied correlation matrices is 0.035661302090136515

The correlation matrices are different but are not too far apart. This shows that the theory-implied correlation matrix blended theory-implied views with empirical ones.



Codependence Module

e Pearson’s Correlation

e Distance correlation

e Angular distance

e Information-Theoretic Codependence

e GPR and GNPR distances
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Pearson corr: 0.99
Norm.mutual info: 0.70
Distance correlation: 0.99
Information variation: 0.47
Max correlation: 0.99
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Pearson corr: 0.11
Norm.mutual info: 0.63
Distance correlation: 0.53
Information variation: 0.73
Max correlation: 0.99
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Pearson corr: 0.06
Norm.mutual info: 0.38
Distance correlation: 0.52
Information variation: 0.76
fMax correlation: 0.96

Pearson corr: 0,03

Norm.mutual info? 0.02

Distance correlation: 0.06 .

Information variation: 0.99 '@ |

Max correlation: 0.21, _ * (S &
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Pearson’s correlation

e Measures linear codependency neglecting

non-linear relationships.
e Correlation is highly influenced by outliers.
e Correlation is typically meaningless

unless the two variables follow a bivariate

Normal distribution.
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According to Lopez de Prado:
“Correlation is a flawed measure of financial codependence. Many
financial relationships are non-linear, and correlation fails to

recognize them”



Distance correlation

A non-linear generalization of Pearson’s correlation

introduced in 2005 by Gabor Székely.

Properties:
® 0<pg:X,¥V)<1
® p4,(X,Y)=0 © XandY are independent

*® w

e Computationally expensive at 0(n?) vs 0(n) for

Pearson’s correlation

According to Lopez de Prado:

® Has analogs for the ordinary moments: Distance

) ) o _ “Distance covariance can be interpreted as the average Hadamard
variance, Distance standard deviation, and Distance ) ) ) ,
product of the doubly-centered Euclidean distance matrices of X, Y

covariance.



Angular distance

Correlation is that it's not a metric.

Em non-negativity: p(X,Y) >0
identity of indiscernibles: pX,Y)=0oX=Y
symmetry: p(X,Y) = p(Y,X)

mm subadditivity: p(X,Z2) < p(X,Y) + p(X,Y)

® Problem? Incoherence example:
“For instance, the difference between correlations (0.9,1.0)
is the same as (0.1,0.2), even though the former involves a
greater difference in terms of codependence”. - Lopez de
Prado

According to Lopez de Prado:

“Metric functions are important because they induce an
intuitive topology on a given set, which allows us to apply
notions of “proximity” or “similarity”



Angular distance

Defined metrics based on correlation:

e Angular distance:

pa(X,Y) = Ji— (1-p&x, 1))

® Absolute angular distance:

® Squared angular distance:

pa(X,Y) = \/i -(1-p2(x,1)

Proof available in Lopez de Prado[2016]
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According to Lopez de Prado:
“In some financial applications, it makes more sense to apply a modified definition of

angular distance, such that the sign of the correlation is ignored”

(long-only portfolios vs long-short portfolios)


https://papers.ssrn.com/sol3/abstract_id=2708678

Information-Theoretic Codependence

Measures from Information Theory:

® Entropy: H(X) = — Yyes, p(x) log(p(x))

Joint entropy: H(X,Y) = — X yes,xs, P(x, ¥)log(p(x, ¥))

® Conditional entropy: H(X|Y) = H(X,Y) — H(Y)

Mutual information: I1(X,Y) = H(X) — H(X|Y)

Variation of information: VI(X,Y) = H(X|Y) + H(Y|X)

A picture from Lopez de Prado[2020]

Reference and more information in Lopez de Prado[2020]



https://papers.ssrn.com/sol3/abstract_id=3512994
https://papers.ssrn.com/sol3/abstract_id=3512994

A novel distance described in the work by Gautier
Marti[2017]. This distance allows to discriminate random

variables both on distribution and dependence:

* Distributional distances focus on dissimilarity
between probability distributions and quantify

divergences in marginal behaviours.

* Dependence distances, such as the distance
correlation or copula-based kernel dependency
measures focus on the joint behaviours of random
variables, generally ignoring their distribution

properties.

GPR 6 =05

GNPR 6 =0 GNPR O =1 GNPR 6 =0.5
Both GPR(6 = 1) and GNPR (8 = 1) highlight the 5 correlation clusters
Only GNPR(6 = 0) finds the 2 distributions subdividing them
GNPR (6 = 0.5) can highlight the 10 original clusters

GPR(6 = 0.5) simply adds noise on the correlation distance matrix it recovers


https://www.researchgate.net/publication/322714557_Some_contributions_to_the_clustering_of_financial_time_series_and_applications_to_credit_default_swaps

Minimum Covariance Determinant

prob[A]

Covariance Estimator with Shrinkage

Semi-Covariance Matrix

De-noising and De-toning Covariance Matrix

Tolerance ellipse (97.5%)
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Minimum Covariance Determinant

* The MCD algorithm adjusts

covariance to omit estimation errors
caused by outliers in the data. This
estimator was introduced by P.J.

Rousseeuw.

* Main idea behind the MCD is to
determine a subset of non-outliers
and compute their empirical

covariance matrix.
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Hubert, Mia & Debruyne, Michiel. (2010)
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Influence of outliers on the location estimation
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Reproduced with scikit-learn MCD code snippet.




Covariance Estimator with Shrinkage

Regularized covariance: likelihood and shrinkage coefficient

* |n some situations due to numerical
reasons the estimated covariance
matrix cannot be inverted. Shrinkage

is used to avoid this problem.

* Main idea behind shrinkage is to
reduce the ratio between the
smallest and the largest eigenvalues

of the empirical covariance matrix.

Tr
z =(1-a) Z +a ﬂ
cov_shrunk cov p

Error: negative log-likelihood on test data
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Reproduced with scikit-learn LedoitWolf vs OAS code snippet.
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Semi-Covariance Matrix

Figure 1. Simulated Historical Performance: Solactive US Large & Mid Cap

* Semi-Covariance matrix is a measure of the Minimum Downside Volatility Index and Minimum Volatility Index (1999-2018)

downside volatility of a portfolio. This metric 5000
also allows measuring the volatility of returns ;223
below a specific threshold. =000
4000

* This tool is used to minimize negative 3000
returns. It was mentioned in the works of 2000
Markowitz, however is still not widely used. moz

2010 2002 2004 2006 2008 20010 2002 2014 2016 2018
=—5Solactive U5 Large & Mid Cap Minimum Downside Volatility Index

T
1 o
SemiCovi,j — TZ[Min(Ri,t _ B, 0) * Min(Rj’t _ B, 0)] Solactive US Large & Mid Cap Minimum Volatility Index
t=1

Solactive US Large & Mid Cap Index

Solactive Research Paper. (2017)



De-noising and De-toning Covariance Matrix

De-noising is an alternative to shrinkage that
discriminates between eigenvalues that are associated
with noise and eigenvalues associated with signal

components

De-toning is based on removing the eigenvector
associated with the market component. According to

Lopez de Prado:

“By removing the market component, we allow a greater

portion of the correlation to be explained by components
that affect specific subsets of the securities. It is similar to
removing a loud tone that prevents us from hearing other

sounds”
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Figure 2.2 Fitting the Marcenko—Pastur PDF on a noisy covariance matrix.

—— Marcenko-Pastur dist
Empirical dist
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Lopez de Prado. (2020)
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Figure 2.3 A comparison of eigenvalues before and after applying the residual

eigenvalue method.




Correlation Matrix of Asset Returns

Applications in MIFinLab .

e Optimal Number of Clusters (ONC)

rench-2Y

e Portfolio Optimization (MVO,CLA, HRP, HERC) o
e Theory-Implied Correlation (TIC) [ oo

- EuroStox_Sm

- FTSE_Small




® The TIC algorithm is aiming to estimate a forward-
looking correlation matrix based on economic theory.
The method is using a theoretical classification of
assets (hierarchical structure) and fits the empirical

correlation matrix to the theoretical structure.

“A problem of empirical correlation matrices is that they are
purely observation driven, and do not impose a structural view
of the investment universe, supported by economic theory” -

Lopez de Prado
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Exhibit 5 — The empirical correlation matrix

Exhibit 4 — The de-noised TIC matrix

Lopez de Prado. (2019)
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